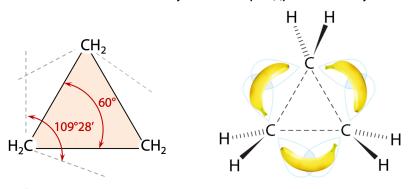


Циклоалканы

Строение С_n**H**_{2n}


Предельные циклические углеводороды (алициклические углеводороды). Содержат только одинарные связи. sp^3 -гибридизация атомов углерода.

За счет уменьшенного угла (60° у циклопропана и 90° у циклобутана) по сравнению со стандартным тетраэдрическим углом 109°28′ создается угловое напряжение. Связи в циклопропане из-за их изгиба называют «банановыми» – правда похожи?

Малые циклы по химической активности близки к **не**предельным углеводородам, 5-6-членные циклы более устойчивы и по химической активности сравнимы с алканами.

Отклонение валентного угла от тетраэдрического (угловое напряжение Байера):

Чем больше отклонение угла от тетраэдрического, тем хуже перекрываются орбитали и **связи становятся слабее**.

Физические свойства

Циклоалканы не растворяются в воде, но растворяются в органических растворителях: нефть и гексан С₀Н₁₄. Температуры кипения и плавления более высокие по сравнению с соответствующими алканами.

Количество атомов углерода	Циклоалканы		Физические свойства			
	Название	Формула	Агрегатное состояние (н.у.)	Запах		
1	Таких циклоалканов нет					
2						
3	Циклопропан	C₃H ₆	Газ	Сладкий		
4	Циклобутан	C ₄ H ₈	Жидкость	Тяжелый		
5 – 17			Жидкости	Тяжелый		
18 и более			Твердые вещества	_		

Гомологический ряд

В цепочках на ЕГЭ лучше писать формулы с указанием атомов углерода и водорода, а не сокращать их. Так легче контролировать количество атомов в продуктах и реагентах. Тем не менее обе формы записи являются верными.

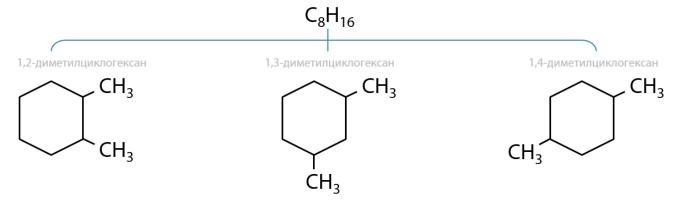
$$CH_2$$
 H_2C CH_2 H_2C CH_2 H_2C CH_2 H_2C CH_2 H_2C CH_2 CH_2

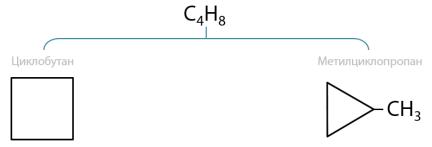
Пространственное строение циклоалканов

	Циклопропан	Циклобутан	Циклопентан	Циклогексан
Формула	sp ³ sp ³	sp ³ sp ³ sp ³	sp ³ sp ³ sp ³	sp ³ sp ³ sp ³ sp ³
Расчетный угол	60°	90°	108°	120°
Строение				
	Атомы углерода лежат в одной плоскости.	складка	конверт	кресло ванна

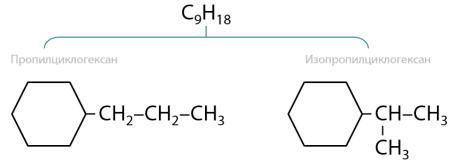
Органика с НУЛЯ до углубленного уровня

- Разбираем все 17 классов соединений.
- 🤍 Открытые вебинары каждый понедельник.




Изомерия

Структурная изомерия:

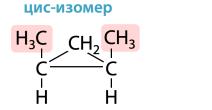

- 1. Углеродного скелета:
- а) Расположение заместителей в цикле

б) Размер цикла: например, циклобутан и метилциклопропан являются изомерами

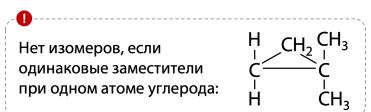
в) Строение заместителя: пропилциклогексан и изопропилциклогексан

2. Межклассовая: циклоалканы изомерны алкенам

$$CH_3-CH_2-CH_2-CH_2-CH_2-CH_2$$
 С С GH_{12} Циклогексан



Пространственная изомерия:


Геометрическая изомерия (цис/транс-изомерия).

Цис–1,2–диметилциклопропан

Транс–1,2–диметилциклопропан

Получение

В промышленности

Циклоалканы в больших количествах получают из нефти и природного газа, их первооткрыватель – В.В. Марковников. Другое название класса циклоалканов – *нафтены* (от греч. «нефть»).

В лаборатории

1. **Дегалогенирование дигалогенпроизводных** (нагревание с Mg или Zn, реже Na, Li). Может рассматриваться как внутримолекулярная реакция Вюрца.

$$\begin{array}{c|c} & & & \\ \hline CH_2-CH_2-CH_2-CH_2+Mg & \xrightarrow{t^\circ} & H_2C & -CH_2 \\ \hline CI & & & & & \\ \hline \\ CI & & & & \\ \hline \end{array} + MgCl_2$$

СН₂-СН₂-СН-СН₃ + Zn
$$\xrightarrow{t^{\circ}}$$
 $\xrightarrow{CH_3}$ + ZnBr₂ Br Br

$$\begin{array}{c} \text{СПОДВЕСКА} \\ \text{СН}_3 \\ \text{CH}_2\text{-CH-CH}_2\text{-CH}_2\text{+Mg} \\ \text{CI} \end{array} \xrightarrow{t^\circ} \begin{array}{c} \text{H}_2\text{C} \\ \text{+MgCl}_2 \\ \text{H}_2\text{C} \\ \text{-CH}_2 \end{array} + \text{MgCl}_2$$

2. **Гидрирование аренов.** Катализатор Ni/Pt, давление, температура. Получение циклогексана и его производных.

$$+ 3H_2 \xrightarrow{t^\circ, Pt}$$
 Диклогексан C_6H_{12}

$$CH_3 + 3H_2 \xrightarrow{t^\circ, Pt} CH_3$$
Метилбензол C_7H_8 Метилциклогексан C_7H_{14} Толуол

Рабочая тетрадь. Органика: с теорией и заданиями

- 180 цветных страниц А4 на пружине.
- 🤍 Все классы веществ и инфографики.
- stepenin.ru/book-organic

🚾 1474268669 🏻 🚾 217800681

Химические свойства

Реакции радикального замещения

Характерны для средних циклов: циклопентана и циклогексана.

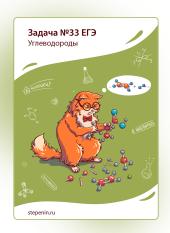
1. **Галогенирование.** Инициируется излучением (hv).

$$H$$
 + Br-Br hv + HBr Бромциклогексан

Если в составе молекулы есть заместитель, то галогенирование идет по третичному атому углерода:

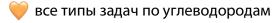
$$H_2$$
С — CH_2 третичный H_2 С — CH_2 H_2 С — CH_3 + Br — Br — H_2 С — CH_3 + HBr — H_2 С — CH_3 — C

2. Нитрование. Реакция циклоалканов с азотной кислотой, получение нитросоединений.


нитроциклогексан

третичный

$$CH_3 + HO-NO_2 \xrightarrow{t^{\circ}} CH_3 + H_2O$$


нитросоединение

1-метил-1-нитроциклопентан

Задача 33. Углеводороды

50 лучших номеров с ответами

🧡 60 страниц формата А5

🧼 можешь встретить на ЕГЭ

Реакции присоединения

1. **Галогенирование**. Протекает при нагревании и характерна только для циклопропана. Иногда в сборниках приводят реакцию галогенирования циклобутана с образованием 1,4-дихлорбутана или 1,4-дибромбутана, которая протекает только на бумаге. На самом деле циклобутан присоединяет только водород с образованием *н*-бутана, при чем медленнее, чем циклопропан (см. ниже п.3).

2. **Гидрогалогенирование**. Протекает при нагревании и характерна только для циклопропана. Иногда встречается аналогичная реакция с циклобутаном, но она протекает только на бумаге.

$$CH_{2}$$
 CH_{2} CH_{2} CH_{2} CH_{2} CH_{3} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{3} CH_{2} CH_{3} CH_{2} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{2} CH_{3} CH_{3}

3. **Гидрирование малых циклов**. Возможна для циклопропана и циклобутана. В более жестких условиях циклопентан аналогично гидрируется с раскрытием цикла и образованием *н*-пентана.

Горение

Циклоалканы сгорают на воздухе до углекислого газа и воды.

Важно Циклоалканы не окисляются перманганатом калия. Не обесцвечивают бромную воду (для циклопропана такая реакция возможна, но происходит медленнее, чем с пропеном).

Свыше 1800 бесплатных заданий и органических цепочек есть на нашем сайте. Быстрее туда, решать!

stepenin.ru/tasks/organic

