

Алкены

Строение

C_nH_{2n}

Алкены – ненасыщенные непредельные углеводороды, содержащие в составе одну двойную связь C=C. Алкены также называют этиленовыми углеводородами (по названию первого представителя алкенов – этилена C_2H_4) или **олефинами** – «рождающими масло», так как при присоединении к этилену многих веществ, например, хлора, образуются маслянистые жидкости.

Двойная связь у алкенов состоит из σ -связи (связь между атомами углерода по линии, проходящей через центры их ядер) и π -связи (боковое перекрывание p-орбиталей сверху и снизу относительно σ -связи). **Атомы углерода при двойной связи находятся в** \mathbf{sp}^2 -гибридизации и угол между их гибридными орбиталями составляет 120° , что соответствует углу плоского треугольника.

Номенклатура

Систематическая номенклатура (IUPAC)

Необходимо выбрать самую длинную углеродную цепь, включающую в состав двойную связь; пронумеровать атомы углерода так, чтобы двойная связь и все заместители имели меньшие числа в своих положениях.

Алгоритм формирования названия: в начале указываются все заместители с их положениями (номерами), далее количество атомов углерода в главной цепи и в конце добавляется суффикс –*ен* с указанием положения двойной связи в цепи.

Примеры названий алкенов:

3,3-диметилпентен-1

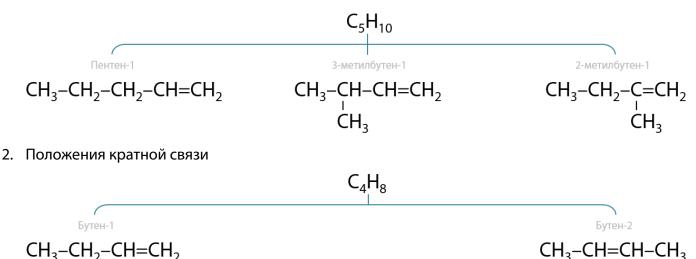
Органика с НУЛЯ до углубленного уровня

Тетрабромэтилен

- Разбираем все 17 классов соединений.
- Открытые вебинары каждый понедельник.
- stepenin.ru/courses/organic10

Физические свойства

Количество атомов углерода	Алкены		Физические свойства	
	Название	Формула	Агрегатное состояние	Запах
1	-	-	-	-
2	Эт ен	C ₂ H ₄	Газообразные вещества	Сладкий
3	Проп ен	C ₃ H ₆		Неприятный
4	Бут ен -1	C ₄ H ₈		Бензиновый
4	Бут ен -2	C ₄ H ₈		Бензиновый
5 – 17			Жидкость	Тяжелый
18 и более			Твердые вещества	-

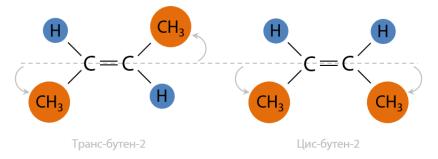


Изомерия

Для алкенов характерно два вида изомерии: структурная и пространственная (геометрическая).

Структурная изомерия:

1. Положения заместителя



3. Межклассовая изомерия: алкены изомерны циклоалканам

$$CH_3-CH_2-CH_2-CH_2-CH_2-CH_2$$
 С С C_6H_{12} Циклогексан

Пространственная (геометрическая) изомерия:

Два вида изомеров отличаются только расположением заместителей относительно плоскости двойной C=C связи. Для определения *цис-* или *транс-*изомера необходимо рассматривать самые заместители у каждого атома углерода C=C связи:

Цис-изомер характеризуется положением заместителей по одну сторону от двойной связи. *Транс*-изомер – по разные стороны от двойной связи.

Если хотя бы при одном атоме углерода C=C связи одинаковые заместители, то алкен не имеет геометрические изомеры

Получение алкенов

1. **Дегидрирование алканов.** Промышленный способ. Процесс происходит при нагревании на поверхности металлических Ni, Pt, Pd или оксидных Cr₂O₃ или Fe₂O₃ катализаторов.

$$CH_2$$
- CH - CH_3 $\xrightarrow{t^\circ, Ni}$ H_2 + CH_2 = CH - CH_3 Пропен

$$CH_{3}$$
— CH — CH_{3} $\xrightarrow{t^{\circ}, \, \text{Ni}}$ CH_{3} — C = CH_{2} $+ H_{2}$ CH_{3} CH_{3}

Важно В процессах дегидрирования помимо алкенов могут образоваться также алкины, а при использовании алканов с главной углеродной цепью C_6 и более – ароматические углеводороды (реакция дегидроциклизации и ароматизации).

2. **Дегидратация спиртов** (отщепление воды). Спирты в присутствии концентрированных серной кислоты H_2SO_4 или фосфорной кислоты H_3PO_4 и нагревании >140°C отщепляют воду. Гидроксильная группа -OH и атом водорода -H отрываются от соседних атомов углерода с образованием более замещенного алкена.

$$CH_2-CH_2 \xrightarrow{H_2SO_{4 \text{ конц.}}} CH_2=CH_2+H_2O$$
 Этен, этилен Этанол $CH_3-CH-CH_2 \xrightarrow{H_2SO_{4 \text{ конц.}}} CH_3-CH=CH_2+H_2O$ Пропен, пропилен Пропанол-1 $CH_3-CH_2-CH-CH_2 \xrightarrow{H_2SO_{4 \text{ конц.}}} CH_3-CH_2-CH=CH_2+H_2O$ Бутен-1

В случаях, когда появляется выбор в реакциях отщепления воды, от каких именно соседних атомов углерода отщепить группу –*OH* и атом водорода –*H*, пользуемся **правилом Зайцева**. Отщепление водорода происходит от того соседнего углерода, при котором изначально меньше атомов водорода:

$$CH_3$$
 CH_3 CH_3

$$CH_3-CH-CH-CH_3 \xrightarrow{H_2SO_{4 \text{ KOHU.}}} CH_3-CH=CH-CH_3 + H_2O$$

$$EVALUATION FOR THE STATE OF TH$$

3. **Дегидрогалогенирование** (отщепление галогеноводорода). Спиртовый раствор щелочи NaOH/KOH приводит к отщеплению галогеноводорода аналогично дегидратации: атом водорода –*H* и галогена –*Hlg* отщепляются от соседних атомов углерода по правилу Зайцева.

$$CH_2$$
- CH_2 + NaOH $_{\text{(спирт.)}}$ $\xrightarrow{t^{\circ}}$ CH_2 = CH_2 + NaBr + H_2 O Этен, этилен

Монобромэтан

$$CH_2$$
- CH - CH_3 + NaOH (спирт.) $\xrightarrow{t^\circ}$ CH_2 = CH - CH_3 + NaBr + H $_2$ O Пропен, пропилен

1-бромпропан

$$CI$$
 CH_3 — C — CH_3 + NaOH $(cпирт.)$ $\xrightarrow{t^\circ}$ CH_3 — C = CH_2 + NaBr + H_2 O CH_3 CH_3 CH_3 CH_3

Правило Зайцева

При отщеплении галогеноводородов и воды атом водорода забираем от менее гидрированного атома углерода при двойной связи.

Запоминалка: «бедняк беднеет»

$$CH_3$$
- CH - CH - CH_3 + $KOH_{(спирт.)}$ $\xrightarrow{t^{\circ}}$ CH_3 - CH - CH_3 + KBr + H_2O Бутен-2, бутилен

CH₃-CH-CH₂-CH₃ + NaOH (спирт.)
$$\stackrel{t^{\circ}}{\longrightarrow}$$
 CH₃-CH=CH-CH₂-CH₃ + NaBr + H₂O Пентен-2

2-бромпентан

$$H$$
 $CI + KOH_{(спирт.)}$ t° $+ KCI + H_2O$
Хлорциклогексан Циклогексен

$$CI$$
 H C_2H_5OH C_2H_5OH C_2H_5OH $CH=CH_2+KCI+H_2O$ C Стирол, винилбензол

4. **Дегалогенирование.** Из дигалогеналканов, у которых атомы галогенов расположены при соседних атомах углерода, можно получить алкен воздействием металла, проявляющего валентность II в своих соединениях (например, Ca, Mg, Zn).

$$CH_2$$
- CH_2 + Zn $\xrightarrow{t^\circ}$ CH_2 = CH_2 + $ZnCl_2$ Этен, этилен 1 ,2-дихлорэтан

$$CH_2$$
- CH - CH_3 + Zn $\xrightarrow{t^\circ}$ CH_2 = CH - CH_3 + $ZnBr_2$ Пропен, пропилен

1,2-дибромпропан

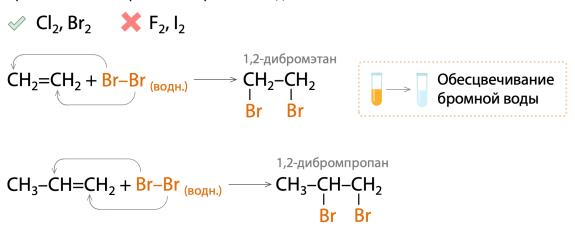
Рабочая тетрадь. Органика: с теорией и заданиями

- 180 цветных страниц А4 на пружине.
- Все классы веществ и инфографики.
- stepenin.ru/book-organic
- 72 1474268669 WB 217800681

Химические свойства алкенов

Для алкенов характерны реакции присоединения по двойной связи с разрывом π-связи. Если же в структуре есть насыщенный углеводородный заместитель (напоминает алкан), то по нему возможно протекание радикальных реакций замещения.

Большая часть реакций алкенов протекает по ионному механизму.


Присоединение симметричных молекул

1. **Гидрирование** (присоединения водорода). Реакция равновесная, возможен обратный процесс дегидрирования (см. раздел «Получение алкенов»).

$$H_2 \xrightarrow{Pt, t^0} CH_3 - CH_2 - CH_2 - CH_2 + H_2 \xrightarrow{Pt, t^0} CH_3 - CH_2 - CH_2 - CH_3$$

Для алкенов также возможен и процесс дегидрирования. Алкены C_2 – C_3 дегидрируются с образованием алкинов, а C_4 – с образованием бутадиена–1,3:

2. **Галогенирование** (присоединение галогенов). <u>Качественная реакция</u>: обесцвечивание бромной воды. Связь между атомами галогенов и π-связь алкена разрываются и в результате взаимодействия образуется дигалогеналканы. Реакция проходит в водной среде, применяются хлорная или бромная вода.

Присоединение несимметричных молекул

Несимметричные молекулы присоединяются по правилу Марковникова:

Правило Марковникова 🥕

При присоединении галогеноводородов и воды атом водорода преимущественно присоединяется к тому атому углерода при кратной связи, который содержит больше атомов водорода.

3. Гидрогалогенирование. Проводится в водной среде, обычно присоединяют HCl или HBr.

$$CH_2$$
= CH_2 + HBr \longrightarrow CH_3 - CH_2 Монобромэтан Br

$$CH_2$$
= CH_2 + H - CI \longrightarrow CH_3 - CH_2 Монохлорэтан

$$CH_{2}=CH-CH_{3}+H-Br$$

$$CH_{2}=CH_{2}-CH_{3}$$

$$CH_{2}-CH_{2}-CH_{3}$$

$$Br$$

$$CH_{2}-CH_{2}-CH_{3}$$

$$Br$$

$$CH_2$$
= CH - CH_2 - CH_3 + HBr \longrightarrow CH_3 - CH - CH_2 - CH_3 2-бромбутан Br

$$CH_3$$
— $C=CH_2+H$ — CI \longrightarrow CH_3 — C — CH_3 2-метил-2-хлорпропан CH_3

4. **Гидратация** (присоединение воды). Присоединение происходит в кислой среде, применяются H_2SO_4 или H_3PO_4 . Образуются одноатомные (с одной OH-группой) спирты.

$$CH_2 = CH_2 + H - OH$$
 H_2SO_4 (конц.) $CH_3 - CH_2$ Этанол OH

$$CH_2$$
= CH - CH_3 + HOH $\stackrel{H^+}{\longrightarrow}$ CH_3 - CH - CH_3 По правилу Марковникова OH Пропанол-2

Радикальные реакции алкенов

Реакции присоединения, проходящие по радикальному механизму, идут строго против правила Марковникова.

- 5. **Галогенирование по аллильному положению** (замещение как у алканов). Аллильное положение атом углерода в sp^3 -гибридизации, расположенный по соседству с двойной связью. Замещение атомов водорода в этом положении происходит в условиях как у алканов: облучение светом или нагревание примерно до 500° C.
 - Реакция Львова. Замещение, НЕ присоединение:

3-хлорпропен, аллилхлорид

6. **Полимеризация.** Процесс, при котором происходит разрыв π-связи и соединение мономерных фрагментов между собой с образованием длинной углеродной цепи. По реакции полимеризации получают, например, полиэтилен или полипропилен.

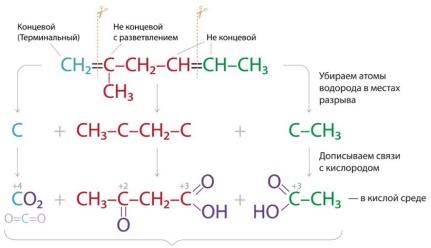
Задача 33. Углеводороды

🧡 все типы задач по углеводородам

50 лучших номеров с ответами

60 страниц формата А5

можешь встретить на ЕГЭ



Окисление алкенов

Окисление алкенов происходит по двойной связи: в жестких условиях разрывают и σ -, и π -связи, а в мягких условиях разрывается только π -связь.

7. **Жесткое окисление перманганатами/дихроматами в кислой среде**. Качественная реакция: обесцвечивание раствора перманганата. Происходит разрыв по двойной связи. Окисление фрагментов молекулы алкена при двойной связи проходит по следующей схеме:

+ КОН: переход в щелочную среду с образованием солей

Примеры реакций окисления алкенов:

8. **Окисление в нейтральной среде перманганатом калия** (окисление по Вагнеру). Качественная реакция: обесцвечивание раствора перманганата калия и выпадение бурого осадка MnO₂. Получение двухатомных спиртов (спиртов с двумя ОН-группами).

$$3CH_2=CH_2 + 2KMnO_4$$
 + $4H_2O \xrightarrow{0-5^{\circ}C}$ $3CH_2-CH_2 + 2MnO_2 \downarrow$ + $2KOH$
OH OH

$$3CH_2$$
= CH - CH_3 + $2KMnO_4$ + $4H_2O \xrightarrow{0-5^{\circ}C} 3CH_2$ - CH - CH_3 + $2MnO_2$ OH OH + $2KOH$

9. **Вакер-процесс**. Окисление алкенов кислородом воздуха в присутствии катализатора PdCl₂ + CuCl₂. В результате окисления, например, этилена образуется ацетальдегид (уксусный альдегид).

$$2CH2=CH2 + O2 \xrightarrow{PdCl2, CuCl2} 2CH3-C$$

Уксусный альдегид, ацетальдегид

10. **Горение** (полное окисление). Как и другие вещества, состоящие из атомов углерода и водорода, алкены сгорают с образованием углекислого газа и воды.

$$H_2C=CH_2 + 3O_2 \xrightarrow{t^\circ} 2CO_2 + 2H_2O$$

В общем виде процесс сгорания алкенов можно записать следующим образом:

$$C_nH_{2n} + (3n/2)O_2 \xrightarrow{t^0} nCO_2 + nH_2O$$

Свыше 1800 бесплатных заданий и органических цепочек есть на нашем сайте.

Быстрее туда, решать!

