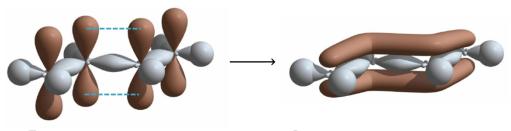


Алкадиены

Строение С_n**Н**_{2n-2}

Непредельные углеводороды. Содержат две двойные связи. sp^2 -гибридизация атомов углерода при кратных (двойных) связях.


плоский треугольник

Две сопряженные двойные связи образуют общее π -электронное облако:

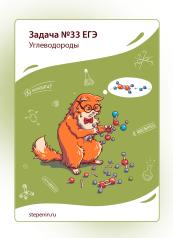
Схема образования общего π -электронного облака (единая π -электронная система).

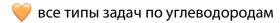
Одинарная связь укорочена по сравнению с обычной, двойная удлинена.

Теоретическое строение. Две двойные C=C связи. Реальное строение. **Сопряженная** электронная система.

· **U**

Если в ходе реакции возможно получения сопряженной системы, то она преимущественно образуется.

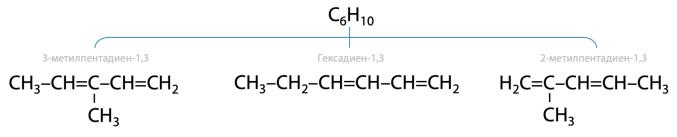



Физические свойства

Формула	Название		Физические
	Международное	Тривиальное	свойства
CH ₂ =CH-CH=CH ₂	Бута диен -1,3	Дивинил	Газ
CH ₂ =C-CH=CH ₂ CH ₃	2-Метилбута диен -1,3	Изопрен	Легкокипящая жидкость

Задача 33. Углеводороды

🧡 60 страниц формата А5

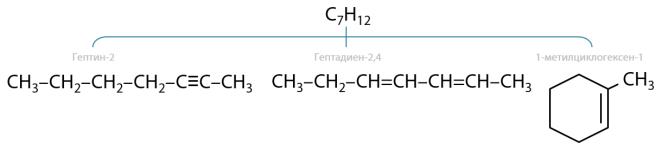

можешь встретить на ЕГЭ

Изомерия

Структурная изомерия:

1. Углеродного скелета.

2. Положения кратной связи: **кумулированные** (аллены – двойные связи находятся при одном атоме углерода), **сопряженные** (двойные связи при соседних атомах углерода) и **изолированные** диены.



3. Межклассовая изомерия: алкадиены изомерны алкинам и циклоалкенам.

Получение

В промышленности

1. **Дегидрирование** алканов. Катализатор Ni, Cr₂O₃. Если есть возможность образовать сопряженную систему из кратных связей (в алканах четырьмя и более атомами углерода в главной цепи), то она будет образовываться при дегидрировании:

$$CH_2$$
- CH - CH - CH_2 $\xrightarrow{t^{\circ}, Cr_2O_3}$ CH_2 = CH - CH = CH_2 + $2H_2$ Бутадиен-1,3, дивинил

$$CH_2$$
= CH - CH_2 - CH_3 \to CH_2 = CH - CH = CH_2 $+$ H_2 \to CH_3 - CH = CH - CH_3 \to CH_2 = CH - CH = CH_2 $+$ H_2 \to CH_3 - CH = CH - CH 3 \to CH 4 H 8

2. **Дегидрирование-дегидратация этилового спирта** (только для получения бутадиена-1,3), реакция Лебедева. Катализаторы Al₂O₃, ZnO.

$$2CH_3-CH_2-OH \xrightarrow{Al_2O_3, ZnO, t^\circ} CH_2=CH-CH=CH_2+2H_2O+H_2$$
 дивинил

В лаборатории

3. **Дегидрогалогенирование**. Отщепление двух молекул галогеноводорода (обычно HCl / HBr, реже HI) при действии спиртового раствора щелочи. Неорганическими продуктами являются соль и вода. Заметьте, что положения атомов галогенов могут быть различными:

$$CH_2$$
- CH - CH - CH_2 + $2KOH_{\text{(спирт.)}} \xrightarrow{t^{\circ}} CH_2$ = CH - CH = CH_2 + $2KCI$ + $2H_2O$ H CI CI H

4. **Дегидратация**. Отщепление двух молекул воды (H_2O) в присутствии концентрированных H_2SO_4 / H_3PO_4 или Al_2O_3 . Принцип процесса аналогичен дегидрогалогенированию:

$$CH_2$$
- CH - CH - CH_2 $\xrightarrow{Al_2O_3, t^\circ}$ CH_2 = CH - CH = $CH_2 + 2H_2O$
 H OH OH H

Рабочая тетрадь. Органика: с теорией и заданиями

- ▼ 180 цветных страниц А4 на пружине.
- Все классы веществ и инфографики.
- stepenin.ru/book-organic

Химические свойства

Присоединение

Для сопряженных алкадиенов можно рассмотреть **три случая** процессов присоединения. Два случая описывают присоединение к диену только одной молекулы реагента, а последний случай – присоединение двух молекул. Небольшая табличка для запоминания условий реакций:

	1,2-присоединение	1,4-присоединение	Полное присоединение
Гидрирование + H ₂	Особые условия!		Катализатор (например, Pt, Ni, Pd или Cr ₂ O ₃)
Галогенирование + Cl ₂ /Br ₂	При ↓t	При ↑t	Избыток галогена (соотношение 1:2)
Гидрогалогенирование + HCl/HBr	При ↓t (по правилу Марковникова)	При ↑t	(-)

1. **Галогенирование.** При присоединении только одной молекулы галогена в зависимости от температуры можно получить два разных продукта, являющихся структурными изомерами:

В избытке галогена возможно получение тетрагалогенпроизводного при любой температуре. И в продукте 1,4-присоединения, и в продукте 1,2-присоединения вторая молекула галогена присоединяется по оставшейся двойной связи:

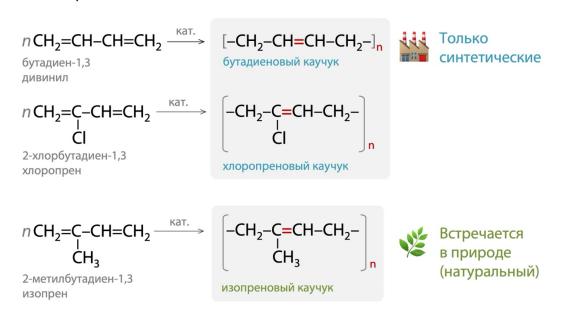
2. **Гидрирование.** При использовании металлических или оксидных катализаторов преимущественно протекает процесс присоединения водорода сразу по двум двойным связям. Результат полного гидрирования – получение алканов:

$$CH_2$$
= CH - CH = CH_2 + $2H_2$ $\xrightarrow{Pt/Pd}$ CH_3 - CH_2 - CH_2 - CH_3 Бутадиен-1,3

1,2- и 1,4-присоединение водорода к диенам при стандартных температурных условиях можно провести «только на бумаге». На практике нужны особые условия, не рассматриваемые в рамках ЕГЭ.

1,2-присоединение
$$CH_3$$
 — CH_2 — CH_3 — CH_2 — CH_3 — CH_2 — CH_2 — CH_3 —

3. **Гидрогалогенирование.** На ЕГЭ обычно рассматривается присоединение только одной молекулы галогеноводорода, используются HCl или HBr. Также, как и в галогенировании, возможны два направления реакции с получением продуктов, являющихся изомерами.



При любой температуре образуется смесь продуктов.

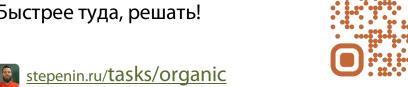
Нагреем и 1,2-продукт постепенно изомеризуется в 1,4-продукт.

Полимеризация

Продукт полимеризации бутадиена-1,3 — полибутадиен или бутадиеновый каучук. Обратите внимание на то, как перемещаются кратные связи: остается одна двойная связь по середине мономерного звена.

Окисление

1. Неполное окисление перманганатом калия.


а) В жестких условиях

а) В мягких условиях, реакция Вагнера

2. Полное окисление. Алкадиены сгорают на воздухе до углекислого газа и воды.

Свыше 1800 бесплатных заданий и органических цепочек есть на нашем сайте. Быстрее туда, решать!

Каучуки

Природный каучук

Изопреновый каучук. Полимер, *цис*-полиизопрен.

$$nCH_2=C-CH=CH_2$$
 CH_2 $C=C$ CH_2 $C=C$ CH_2 $C=C$ CH_2 $C=C$ CH_2

Для повышения устойчивости к перепадам температуры проводят вулканизацию каучука – нагревают натуральный или синтетический полиизопрен с серой. Цепочки сшиваются серными (дисульфидными) «мостиками» и получается резина.

Количество серы контролируется! В избытке серы получают **эбонит**.

Синтетические каучуки

Бутадиеновый каучук, дивиниловый каучук, цис-полибутадиен

$$C = C$$
 $C = C$
 $C = C$
 $C = C$

Хлоропреновый каучук

$$nCH_2=C-CH=CH_2 \xrightarrow{t^\circ, \kappa a \tau} \begin{bmatrix} -CH_2-C=CH-CH_2- \\ CI \end{bmatrix}$$

2-хлорбутадиен-1,3 (хлоропрен)

хлоропреновый каучук