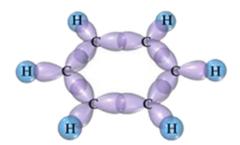


Ароматические углеводороды (арены)

Строение


C_nH_{2n-6}

 sp^2 -гибридизация атомов углерода бензольного кольца. Негибридные p-орбитали атомов углерода образуют единое π -электронное облако – ароматическую систему, общую для всех атомов углерода.

плоский треугольник

Ароматическая π -система обладает повышенной устойчивостью за счет выигрыша в энергии 150 кДж/моль (энергия стабилизации) по сравнению с аналогичным гипотетическим циклогексатриеном.

Плоскость цикла образована сигма-связями sp²-гибридных орбиталей

Негибридные р-орбитали расположены перпендикулярно плоскости цикла

р-орбитали образуют единую сопряженную систему из 6 электронов, пи-электронное облако

Органика с НУЛЯ до углубленного уровня

- Разбираем все 17 классов соединений.
- 💚 Открытые вебинары каждый понедельник.

Физические свойства

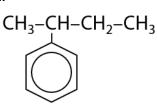
Бензол – бесцветная летучая жидкость с неприятным запахом. Бензол и его пары ядовиты. Ароматические углеводороды не растворяются в воде. Их плотность меньше, чем у воды, и они собираются в слой **над** поверхностью воды.

Гомологический ряд и номенклатура

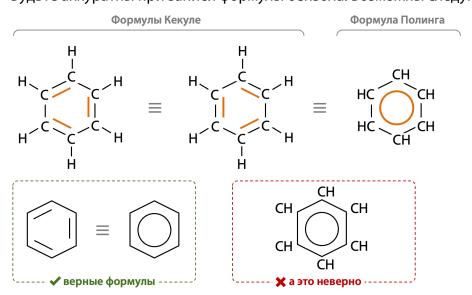
Углеводородные заместители перечисляются по алфавиту. Заместители должны иметь наименьшие из возможных номеров (положений в бензольном кольце).

Правильно: 1-метил-**3**-этилбензол Неправильно: 1-метил-**5**-этилбензол

Одновалентный радикал бензола С₆Н₅называется **фенил**. Радикал метилбензола называется **бензил**. Не путайте!



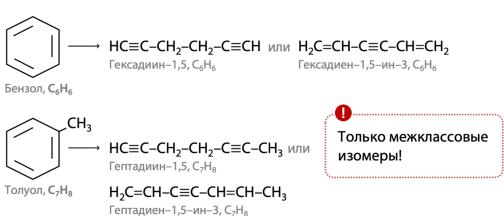
Примеры названий гомологов бензола:


✓Метилбензол,Фенилметан,Толуол

Изопропилбензол, 2-фенилпропан, Кумол

2-фенилбутан

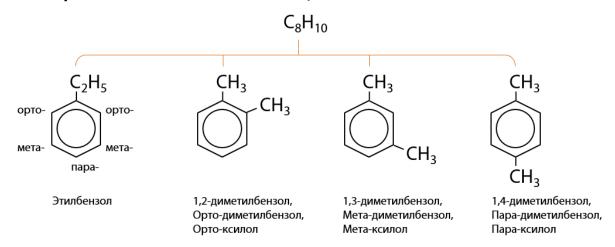
Будьте аккуратны при записи формулы бензола. Возможны следующие варианты:



Изомерия

Есть ли изомеры у бензола и толуола?

Уточнение: среди аренов или межклассовые?



Для других гомологов бензола характерна структурная изомерия в пределах одного класса:

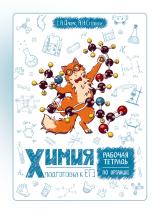
1. Изомерия строения заместителя:

$$CH_3-CH-CH_3$$
 $CH_2-CH_2-CH_3$ U 3 опропилбензол, U 3 опропилбензол, U 4 огранизация U 5 опропилбензол, U 5 огранизация U 6 огранизация U 7 огранизация U 8 огранизация U 9 огранизац

2. Изомерия положения заместителей в цикле:

Получение

В промышленности


1. **Дегидроциклизация алканов.** Катализатор Pt, Pd, Ni или Cr_2O_3 . Отщепление от алкана с шестью и более атомами углерода в главной цепи четырех молекул водорода с замыканием цикла из шести атомов углерода и его дегидрирование с получением ароматической

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3 \xrightarrow{t^{\circ}, Pt} + 4H_2$$

1
 2 3 4 5 6 6 6 1 4 6 7 1 1 2

Этилбензол

1,2-диметилбензол о-диметилбензол о-ксилол

Рабочая тетрадь. Органика: с теорией и заданиями

180 цветных страниц А4 на пружине.

Все классы веществ и инфографики.

stepenin.ru/book-organic

1474268669 WB 217800681

Особенный случай – получение стирола при дегидрировании октана или этилбензола:

$$CH_2$$
— CH_3 $CH=CH_2$ $+ H_2$ $+ H$

Суммарное уравнение: 1 2 3 4 5 6 6 6 2 н-октан Винилбензол Стирол

2. **Дегидрирование циклоалканов.** Катализатор Pt, Pd, Ni или Cr₂O₃.

$$t^{\circ}, Pt$$
 \rightarrow t°, Pt \rightarrow CH_3 \rightarrow

3. Циклотримеризация ацетилена (или пропина). Катализатор – активированный уголь.

3HC≡CH
$$\xrightarrow{C_{(aKT,)}, t^{\circ}}$$
 HC = CH $\xrightarrow{C_{(aKT,)}, t^{\circ}}$ бензол

3HC=C-CH₃
$$\xrightarrow{C_{(aKT,)'}} t^{\circ}$$
 \xrightarrow{C} \xrightarrow{C}

1,3,5-триметилбензол

В лаборатории

Получение бензола:

1. Сплавление солей бензойной кислоты (или ее гомологов) с твердыми щелочами. Аналог реакции Дюма. Используются исключительно твердые соль и щелочь, их сплавляют:

$$CH_3$$
—COONa + NaOH $\stackrel{t^\circ}{\longrightarrow}$ CH_3 —H + Na $_2$ CO $_3$
4-метилбензоат натрия Метилбензол Толуол

Получение гомологов бензола:

2. **Алкилирование бензола**, **реакция Фриделя-Крафтса**. Катализатор $AlCl_3$, нагревание.

$$H + CI - CH_3$$
 $AICI_3$ $CH_3 + HCI$ Метилбензол Толуол

$$H + Br-CH_2-CH_3$$
 $AICI_3$ $CH_2-CH_3 + HBI$

б) со спиртами:

$$+ CH_3OH \xrightarrow{H_3PO_4} CH_3 + H_2O$$

Метилбензол, толуол

$$H$$
 CH_2-CH_3 $+ CH_3-CH_2-OH $\xrightarrow{H^+} H_2C$ Этилбензол$



3. **Алкилирование алкенами.** Катализатор AlCl₃ или H⁺, нагревание.



4. **Реакция Вюрца-Фиттига.** Аналог реакции Вюрца (см. конспект «Алканы»), но с ароматическими галогенпроизводными, в данном случае – с монохлорбензолом.

кумол

$$CI + 2Na + CI - CH_3$$
 $\xrightarrow{t^{\circ}}$ $CH_3 + 2NaCl$ Толуол Метилбензол

Эта **реакция осложняется** образованием дополнительных продуктов – этан, дифенил – за счет удваивания углеводородных фрагментов галогенпроизводных.

Задача 33. Углеводороды

- stepenin.ru/hydrocarbons-book
- 🧡 все типы задач по углеводородам
- 50 лучших номеров с ответами
- 🧡 60 страниц формата А5
- 🧡 можешь встретить на ЕГЭ

Химические свойства бензола

Реакции замещения (ионный механизм реакции)

1. **Нитрование**. Концентрированные HNO_3 и H_2SO_4 («нитрующая смесь»), нагревание. Нитробензол – тяжелая желтоватая жидкость с запахом горького миндаля. Качественная реакция.

$$H$$
 + HO-NO₂ H_2SO_4 , t^o + H_2O H_2SO_4 t^o + H_2O H_2SO_4 t^o 3 апах миндаля

2. **Галогенирование**. Катализаторы FeBr₃ (при бромировании) или AlCl₃ (при хлорировании), нагревание. Используется **не бромная вода**, а жидкий бром. Бромбензол – тяжелая жидкость.

- 3. **Алкилирование, реакция Фриделя-Крафтса**. Катализатор AlCl₃, нагревание. См. «Способы получения гомологов бензола»
- 4. **Алкилирование под действием алкенов**. Катализатор AICI₃ или H₃PO₄, нагревание. См. «Способы получения гомологов бензола».

Реакции присоединения

Разрушение π -электронной системы в жестких условиях.

1. **Гидрирование**. Катализатор Pt, Pd, Ni или Cr₂O₃.

$$\left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle$$
 + 3H₂ $\xrightarrow{t^{\circ}, Pt}$ $\left\langle \begin{array}{c} \\ \\ \\ \\ \end{aligned} \right\rangle$ Циклогексан С₆H₁₂

$$CH_3 + 3H_2 \xrightarrow{t^\circ, Pt} CH_3$$
Метилбензол С₇H₈ Метилциклогексан С₇H₁₄

$$CI$$
 — $CH_3 + 3H_2$ — CI — CH_3 — CH_3

2. **Хлорирование**. Условия проведения – ультрафиолетовое излучение, свет (*hv*).

$$+3Cl_2$$
 hv Cl_H Cl_H Cl_H Cl_G $C_6H_6Cl_6$ (инсектицид) Cl_H $Cl_$

Реакции окисления

Реакции неполного окисления бензола в ЕГЭ не встречают. Но на воздухе он горит коптящим пламенем. В избытке кислорода сгорает полностью:

$$2C_6H_6 + 15O_2 \rightarrow 12CO_2 + 6H_2O$$

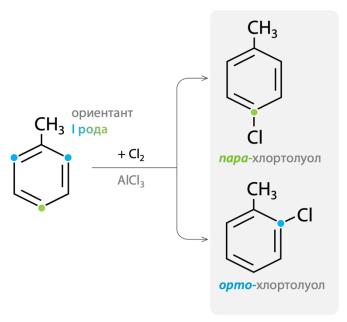
Важно Бензол **не** присоединяет воду и галогеноводороды. **Не** окисляется КМпО₄ и **не** обесцвечивает бромную воду.



Толуол и гомологи бензола

Строение

Алкильный радикал обладает +I-эффектом (положительным индуктивным эффектом), увеличивая электронную плотность в положениях 2,4,6 (*opmo*- и *napa*-положениях). Это определяет направление реакций замещения и облегчает их.


Химические свойства

Реакции с участием бензольного кольца

Замещение

1. **Галогенирование.** Катализаторы — галогениды железа(III) или алюминия (FeBr₃ или AlCl₃). На выходе – смесь *орто-* и *пара-*изомеров.

Важно При записи уравнения реакции в заданиях ЕГЭ следует писать **только один продукт**, наиболее подходящий по условию задания. Смесь продуктов указывать в одной реакции не нужно!

Выбираем продукт по контексту задания

2. **Нитрование**. Для введение группы NO_2 используют «нитрующую смесь» – смесь концентрированных HNO_3 и H_2SO_4 .

Важно При записи уравнения реакции в заданиях ЕГЭ следует писать **только один продукт**, наиболее подходящий по условию. В качестве примера приводим процесс получения *орто*-изомера:

$$CH_3$$
 ориентант I рода $+ HO-NO_2$ H_2SO_4 , t° $+ H_2O$ $+ H_2O$

В более жестких условиях (повышенные температура и давление) можно ввести три нитрогруппы:

$$CH_3$$
 + 3HNO $_3$ конц. t° , H_2SO_4 конц. O_2N + $3H_2O$ + $3H_2O$ O_2 + $3H_2O$ O_2 O_2

Присоединение

Реакции присоединения по кольцу протекают аналогично реакциям с участием бензола. Характерный пример – гидрирование с образованием метилциклогексана. Присоединение, например, галогенов по кольцу у гомологов бензола на ЕГЭ не рассматривается.

Свыше 1800 бесплатных заданий и органических цепочек есть на нашем сайте. Быстрее туда, решать!

Реакции с участием боковой цепи

1. **Галогенирование**. Радикальный механизм как в алканах. Протекает на свету или при нагревании. Замещение водорода только при альфа-атоме углерода:

$$CH_2-H$$
 α CH_2-CI Бензилхлорид $+CI_2$ hv $+HCI$ $Br-CH-CH_3$ $Br-CH-CH_3$ $1-6$ ром- $1-$ фенилэтан $+Br_2$ hv $+HBr$

Особенный случай галогенирования боковой цепи с мультизамещением атомов водорода при альфа-углероде. Используется избыток галогена в соотношении 1:2 или 1:3:

2. **Неполное окисление.** Вне зависимости от длины боковой цепи и числа заместителей в этой реакции происходит разрыв связей от альфа-атома углерода к следующим:

$$cooh$$
 $cooh$ $cooh$

Полное окисление, горение

В избытке кислорода толуол и другие гомологи бензола сгорают до углекислого газа и воды.

Стирол и другие фенилалкены

Стирол (винилбензол) – бесцветная жидкость с приятным запахом. Раздражает слизистые оболочки дыхательных путей и глаз.

СН=СН₂

Винилбензол

Получение

Дегидрирование этилбензола (или октана, см. «Способы получения аренов»)

$$t^{\circ}, Pt$$
 — t°, Pt —

Химические свойства

Из-за наличия кратной связи в углеводородном радикале характерны все реакции, свойственные алкенам.

Присоединение

1. **Гидрирование** (+ H₂). **Кратные связи в боковой цепи восстанавливаются легче**, чем бензольное кольцо. В жестких условиях возможно гидрирование и кратной связи в боковой цепи, и бензольного кольца.

$$CH=CH_2$$
 $+H-H$ t° , Ni $+H-H$

Изопропенилбензол Изопропилбензол Кумол

2. **Гидратация** (+ H₂O). Реакция присоединения молекулы воды по двойной связи углеводородного радикала (-CH=CH₂ и др.). К бензольному кольцу вода не присоединяется!

$$\begin{array}{c|c} \mathsf{CH} = \mathsf{CH}_2 \\ + \mathsf{HOH} & \xrightarrow{\mathsf{t}^\circ} & \mathsf{OH} \end{array}$$

Винилбензол, стирол

1-фенилэтанол

$$CH_3 \qquad CH_3 \qquad CH_3 \qquad C-CH_3 \qquad C-CH_3$$

Изопропенилбензол

2-фенилпропанол-2

3. **Галогенирование** (стирол обесцвечивает бромную воду аналогично алкенам, + Br₂). Реакция присоединения молекулы галогена Cl₂/Br₂ по двойной связи в боковой цепи (-CH=CH₂.)

4. **Гидрогалогенирование** (+ HCl/HBr). Присоединение по двойной связи в боковой цепи по правилу Марковникова.

Винилбензол, стирол

1-фенил-1-хлорэтан

Изопропенилбензол

2-бром-2-фенилпропан

5. Полимеризация

Получение полистирола

$$nCH=CH_2$$
 $-CH-CH_2-$

Получение бутадиен-стирольного каучука. Реакция **со**полимеризации, т.к. для получения полимера используются два разных вещества одновременно.

Окисление

Неполное окисление

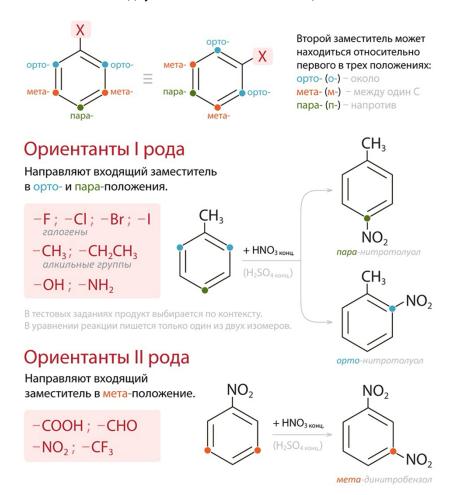
Мягкое окисление нейтральным раствором перманганата калия KMnO₄ при охлаждении (реакция Вагнера). Продукт – ароматический двухатомный спирт (ароматический диол).

$$3 \bigcirc -CH=CH_2 + 2KMnO_4 + 4H_2O \longrightarrow 3 \bigcirc -CH-CH_2 + 2MnO_2 \downarrow + 2KOH OH OH$$

Жесткое окисление раствором KMnO₄ в кислой среде при нагревании. Продукт — кислота.

Горение

В избытке кислорода стирол и его гомологи сгорают до углекислого газа и воды.



Правила ориентации в бензольном кольце

Расположение двух заместителей в кольце:

Примеры протекания реакций замещения в случаях толуола (содержит заместитель первого рода) и нитробензола (заместитель второго рода):